Kalman Filter Examples
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Static State Estimation

» recall the static state estimation problem we have been
studying

the process or plant model

A=1 B =0 R=0 Xx=Ax_,+Bu, +¢

the observation model

C,=1 Q=o' Z, =X +0,
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Static State Estimation

» how well does the Kalman filter work
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Static State Estimation

» notice that we need to specify the measurement noise
covariance Q,
» how sensitive is the Kalman filter to Q, ?

e.g., what if we use a Q; that is much smaller than the actual
measurement noise!

e.g., what if we use a Q; that is much larger than the actual
measurement noise!?
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Static State Estimation

» specified Q, = 0.01 * actual Q,
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Static State Estimation

» specified Q, = 100 * actual Q;
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Static State Estimation

» suppose our measurements get progressively noisier over
time
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noise variance increases 10% for each successive measurement
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Tank of Water

» estimate the level of water in the tank; the water could be
static, filling, or emptying

not sloshing or sloshing float

J

warer

L

measurement 7= L
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Tank of Water

» static level

plant model X’[ — X’[—l

measurement model Zt — Xt + 5’[
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Tank of Water: Static and Not Sloshing
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Tank of Water: Static and Not Sloshing

» notice that in this case the Kalman filter tends towards
estimating a constant level because the plant noise covariance
is small compared to the measurement noise covariance

the estimated state is much smoother than the measurements

» what happens if we increase the plant noise covariance?
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Tank of Water: Filling and Not Sloshing
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Tank of Water: Static and Not Sloshing

» notice that in this case the Kalman filter tends towards
estimating values that are closer to the measurements

» increasing the plant noise covariance causes the filter to place
more weight on the measurements
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Tank of Water: Filling and not Sloshing

» suppose the true situation is that the tank is filling at a
constant rate but we use the static tank plant model

i.e., we have a plant model that does not accurately model the state
transition
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Tank of Water: Filling and not Sloshing
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Tank of Water: Filling and not Sloshing

» notice that in this case the estimated state trails behind the
true level

estimated state has a much greater error than the noisy
measurements

» if the plant model does not accurately model reality than you
can expect poor results

however, increasing the plant noise covariance will allow the filter to
weight the measurements more heavily in the estimation...
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Tank of Water: Filling and not Sloshing
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Tank of Water: Filling and not Sloshing

» it is not clear if we have gained anything in this case

the estimated state is reasonable but it is not clear if it is more
accurate than the measurements

» what happens if we change the plant model to more
accurately reflect the filling?
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Tank of Water

» filling at a (noisy) constant rate and we do not care about the
rate

plant model Xt — XL t—1 + A XL + gt
’ ——
Ut

measurement model Zt — Xt + 5t

» U, is the change in the water level that occurred from time t-1
tot

19 2/28/2018



Tank of Water: Filling and not Sloshing
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Tank of Water: Filling and not Sloshing

» notice that the estimated state is more accurate and
smoother than the measurements

» what about the filling rate?
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Tank of Water

» filling at a (noisy) constant rate and we want to estimate the

22

rate

plant model

measurement model

X

XL
w ] CA XL t_];
A X:il
1 0]x +9,
on

+ &

2/28/2018



Tank of Water: Filling and not Sloshing
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Tank of Water: Filling and not Sloshing

» notice that the estimated filling rate seems to jump more than
the estimated level

this should not be surprising as we never actually measure the filling
rate directly

it is being inferred from the measured level (which is quite noisy)
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Tank of Water: Static and not Sloshing

» can we trick the filter by using the filling plant model when the
level is static?

hopefully not, as the filter should converge to a fill rate of zero!
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Tank of Water: Static and not Sloshing
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Tank of Water: Static and not Sloshing

0.6 |
—*—true state

—F— estimated state |

0.5

state estimate (fill rate)

0 10 20 30 40 50
time

27 2/28/2018



Projectile Motion

» projectile launched from some initial ( )
point with some initial velocity under Vir Vy

the influence of gravity (no drag) ( )
Xor Yo /

A

X(t) =X, +V,t

y(t):yo'I'Vt__gt g
VX(t) :VX
v, (t)=v, — gt
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Projectile Motion

» convert the continuous time equations to discrete recurrence
relations for some time step At

X, =X, + vx,t_lAt

Yi = Yea TV At —5 gAt
th — Vx,t—l

V, =V, — QAL

yit
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Projectile Motion

» rewrite in matrix form

x| [1 0 At 07 X 0
y|_|01 0 Ayl —1 gAt?
v.| |0 0 1 v, 0
vy, CO 0 O 1_J_Vy_t_1 | gt
X A T 0
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Omnidirectional Robot

» an omnidirectional robot is a robot that can move in any
direction (constrained in the ground plane)

» if we are not interested in the orientation of the robot then
its state is simply its location

X =
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http://www.youtube.com/watch?v=DPz-ullMOqc
http://www.engadget.com/2011/07/09/curtis-boirums-robotic-car-makes-omnidirectional-dreams-come-tr/

Omnidirectional Robot

» a possible choice of motion control is simply a change in the
location of the robot

X

X
Y i

%r_J
Xi—1

» with noisy control inputs

X
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Differential Drive

» recall that we developed two motion models for a differential
drive

using the velocity model, the control inputs are

2 2
alvt +0£20)t

2 2
a3V + a0
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Differential Drive

» using the velocity motion model the discrete time forward
kinematics are

(X [ X, +Lsin(@+wAt) )
X, =| Y |=| Y, —<cos(f+wAt)

[ X—Lsin@+Lsin(@+wAt)
=| y+-2Lcosfd—Lcos(@+wAt) | Egs59
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Differential Drive

» there are two problems when trying to use the velocity
motion model in a Kalman filter

the plant model is not linear in the state and control
[ X —a-8in 0 +--sin(6 + e, At) )
X, =| Y +--C0s8 —2-C0S(6 + o, At)
\ 0+ w, At

J

it is not clear how to describe the control noises as a plant
covariance matrix

2 2
t oyVy +0, 0

2 2
063Vt +0(4a)t
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Measurement Model

» there are potentially other problems

any non-trivial measurement model will be non-linear in terms of
the state

» consider using the known locations of landmarks in a
measurement model
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Landmarks

» a landmark is literally a prominent geographic feature of the
landscape that marks a known location

» in common usage, landmarks now include any fixed easily
recognizable objects

e.g., buildings, street intersections, monuments

» for mobile robots, a landmark is any fixed object that can be
sensed
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Landmarks for Mobile Robots

» visual

artificial or natural
» retro-reflective

» beacons

LORAN (Long Range Navigation): terrestrial radio; now being
phased out

GPS: satellite radio
» acoustic

» scent!

38
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Landmarks: RoboSoccer
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Landmarks: Active Light
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Trilateration

» uses distance measurements to two or more landmarks

» suppose a robot measures the distance d, to a landmark

the robot can be anywhere on a circle of radius d; around the
landmark

d;

landmark
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Trilateration

» without moving, suppose the robot measures the distance d,
to a second landmark

the robot can be anywhere on a circle of radius d, around the
second landmark

d, d,

- @

landmark landmark
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Trilateration

» the robot must be located at one of the two intersection
points of the circles

tie can be broken if other information is known

landmark landmark

44 2/28/2018



Trilateration

» if the distance measurements are noisy then there will be
some uncertainty in the location of the robot
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Trilateration

» notice that the uncertainty changes depending on where the

robot is relative to the landmarks

» uncertainty grows quickly if
the robot is in line with the
landmarks

46
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Trilateration

» uncertainty grows as the
robot moves farther
away from the landmarks

but not as dramatically
as the previously slide
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Triangulation

» triangulation uses angular information to infer position
http://longhamscouts.org.uk/content/view/52/38/

Within the triangle
is your location
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http://longhamscouts.org.uk/content/view/52/38/

Triangulation

» in robotics the problem often appears as something like:

suppose the robot has a (calibrated) camera that detects two
landmarks (with known location)

then we can determine the angular separation, or relative bearing, o
between the two landmarks

known D,

position known
position
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Triangulation

» the unknown position must lie somewhere on a circle arc
Euclid proved that any point on the shown circular arc forms an
inscribed triangle with angle o

we need at least one more beacon to estimate the robot’s location

known D,

position known
position
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