# Kalman Filter Examples

2/28/2018

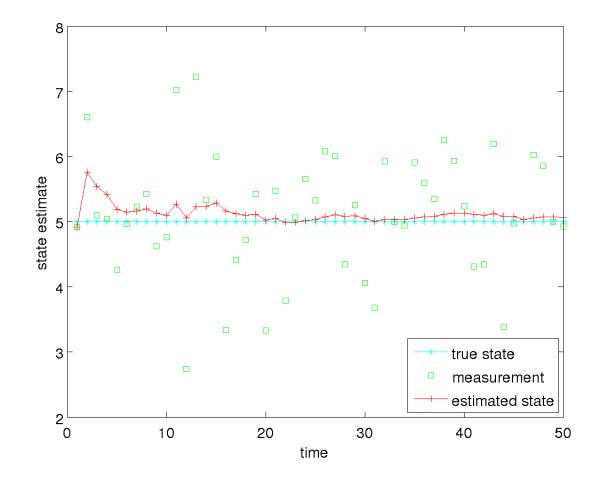
- recall the static state estimation problem we have been studying
  - the process or plant model

$$A_t = 1, \quad B_t = 0, \quad R_t = 0 \qquad x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$
$$= x_{t-1}$$

the observation model

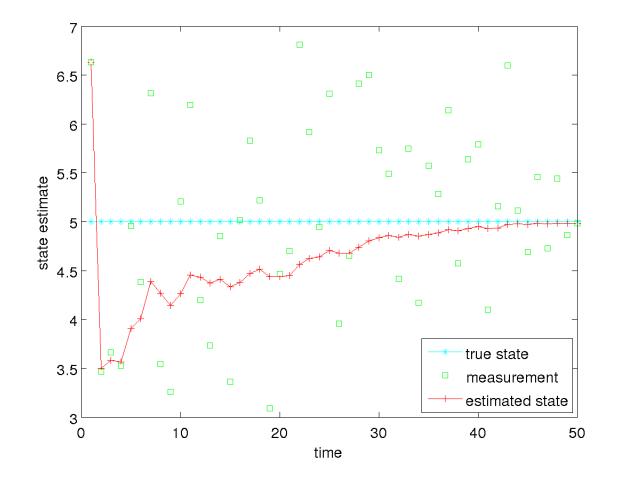
$$C_t = 1, \quad Q_t = \sigma_t^2 \qquad \qquad z_t = x_t + \delta_t$$

how well does the Kalman filter work



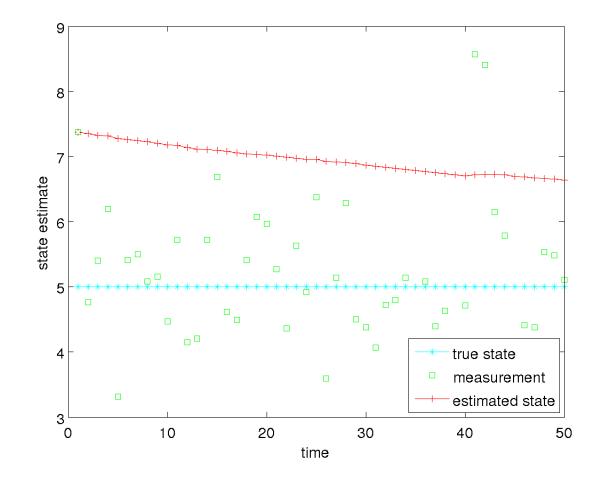
- notice that we need to specify the measurement noise covariance  $Q_t$
- how sensitive is the Kalman filter to  $Q_t$ ?
  - e.g., what if we use a  $Q_t$  that is much smaller than the actual measurement noise?
  - e.g., what if we use a  $Q_t$  that is much larger than the actual measurement noise?

• specified  $Q_t = 0.01 * \operatorname{actual} Q_t$ 



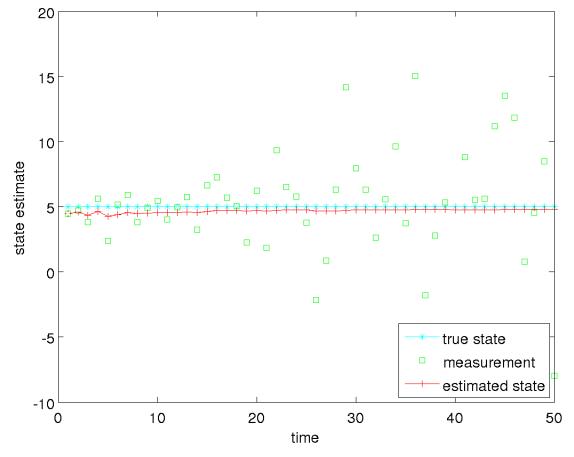
5

▶ specified  $Q_t$  = 100 \* actual  $Q_t$ 



6

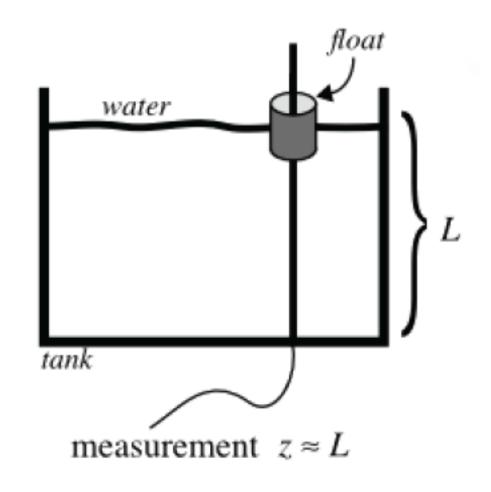
 suppose our measurements get progressively noisier over time



noise variance increases 10% for each successive measurement

### Tank of Water

- estimate the level of water in the tank; the water could be
  - static, filling, or emptying
  - not sloshing or sloshing



#### Tank of Water

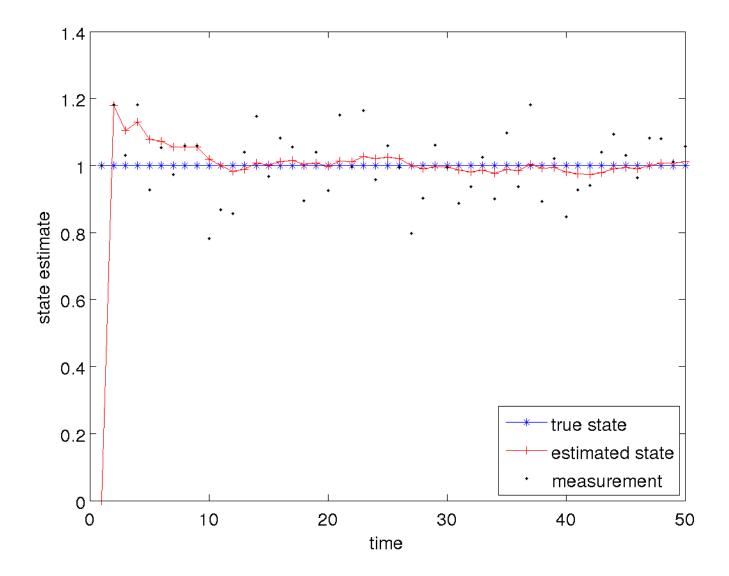
static level

plant model 
$$X_t = X_{t-1}$$

measurement model

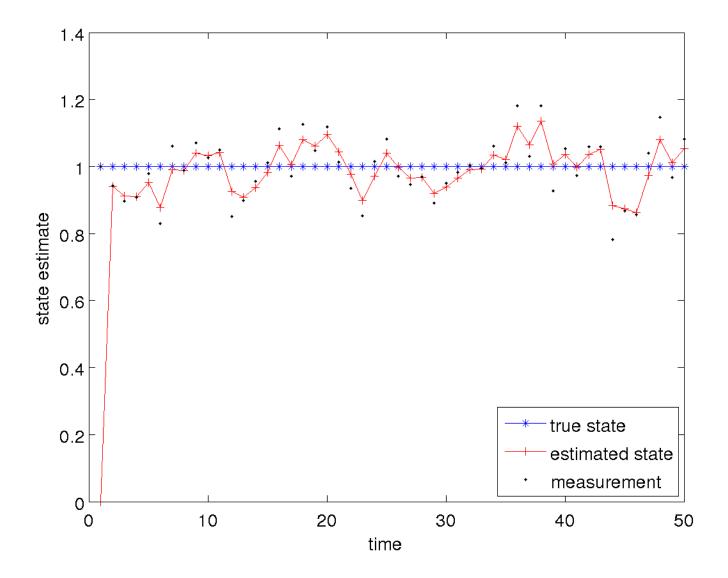
$$z_t = x_t + \delta_t$$

### Tank of Water: Static and Not Sloshing



# Tank of Water: Static and Not Sloshing

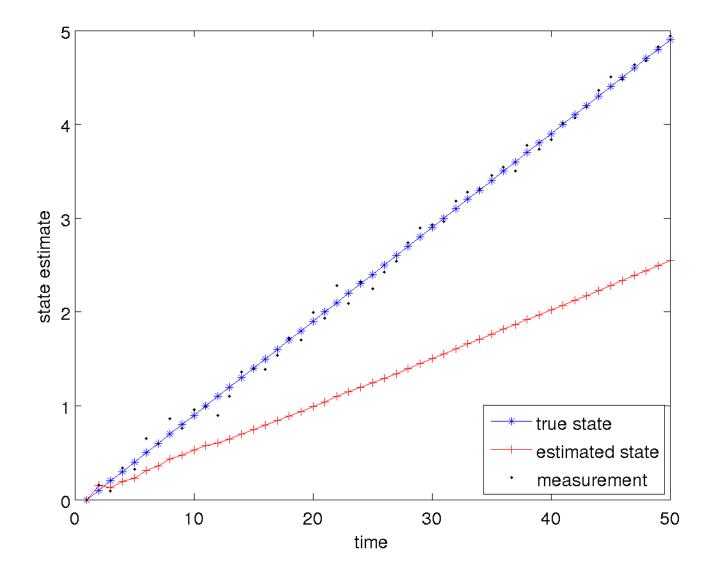
- notice that in this case the Kalman filter tends towards estimating a constant level because the plant noise covariance is small compared to the measurement noise covariance
  - the estimated state is much smoother than the measurements
- what happens if we increase the plant noise covariance?



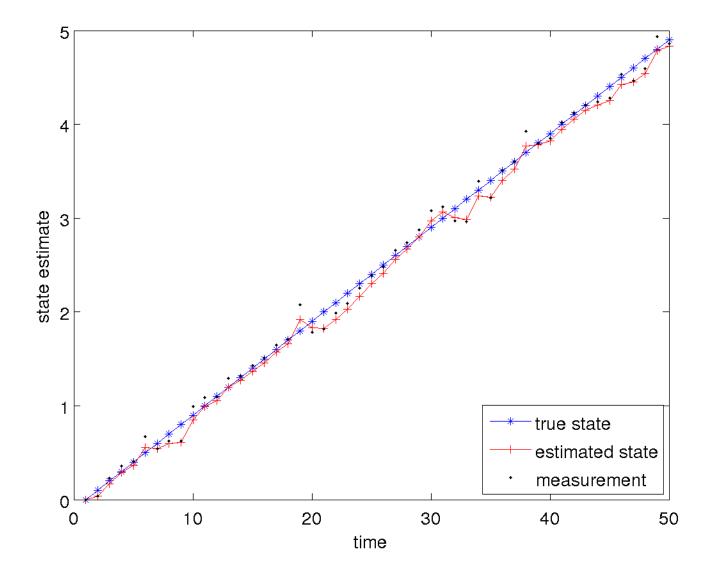
# Tank of Water: Static and Not Sloshing

- notice that in this case the Kalman filter tends towards estimating values that are closer to the measurements
- increasing the plant noise covariance causes the filter to place more weight on the measurements

- suppose the true situation is that the tank is filling at a constant rate but we use the static tank plant model
  - i.e., we have a plant model that does not accurately model the state transition



- notice that in this case the estimated state trails behind the true level
  - estimated state has a much greater error than the noisy measurements
- if the plant model does not accurately model reality than you can expect poor results
  - however, increasing the plant noise covariance will allow the filter to weight the measurements more heavily in the estimation...



- it is not clear if we have gained anything in this case
  - the estimated state is reasonable but it is not clear if it is more accurate than the measurements
- what happens if we change the plant model to more accurately reflect the filling?

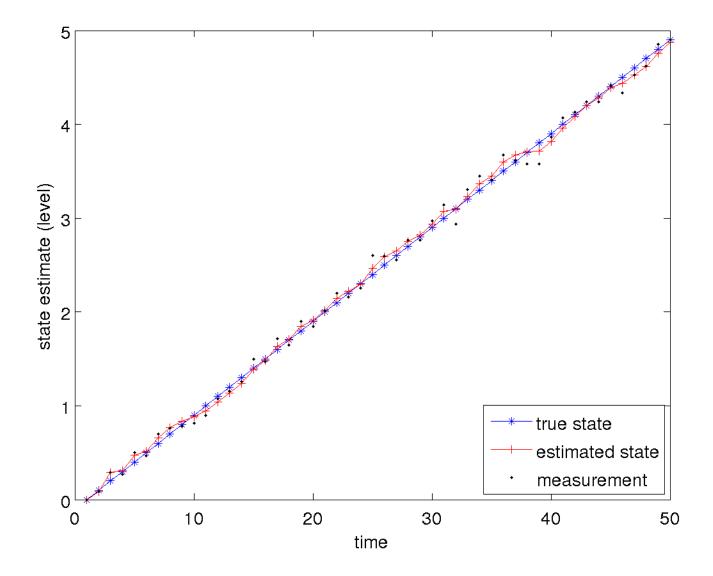
### Tank of Water

filling at a (noisy) constant rate and we do not care about the rate

plant model 
$$x_t = x_{L,t-1} + \Delta x_L + \mathcal{E}_t$$
  
urement model  $z_t = x_t + \delta_t$ 

*u<sub>t</sub>* is the change in the water level that occurred from time *t*-1
 to *t*

meas



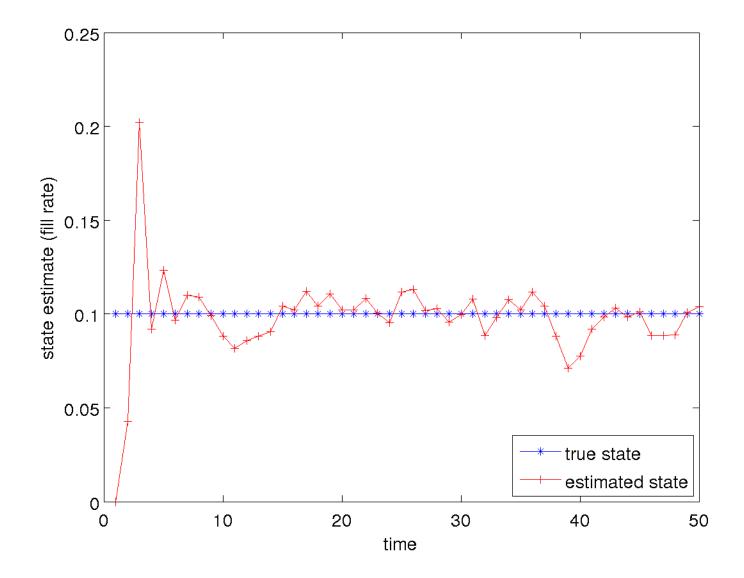
- notice that the estimated state is more accurate and smoother than the measurements
- what about the filling rate?

#### Tank of Water

filling at a (noisy) constant rate and we want to estimate the rate

measurement model

$$z_t = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{C_t} x_t + \delta_t$$

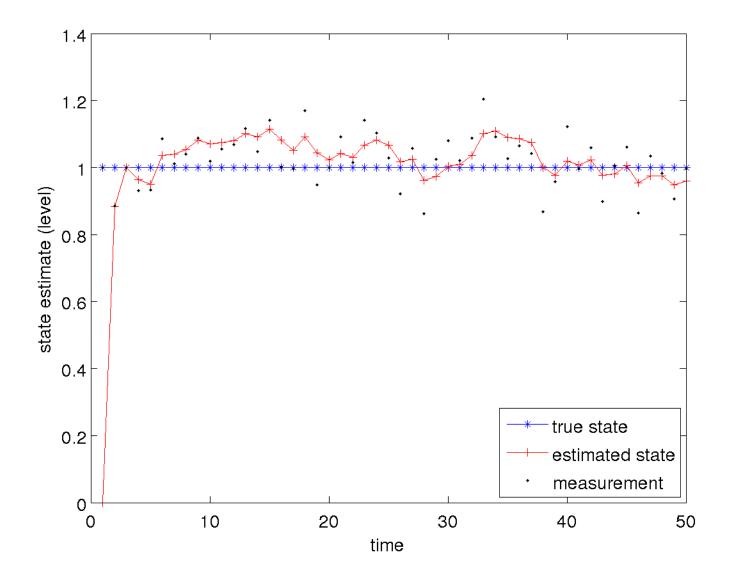


- notice that the estimated filling rate seems to jump more than the estimated level
  - this should not be surprising as we never actually measure the filling rate directly
    - > it is being inferred from the measured level (which is quite noisy)

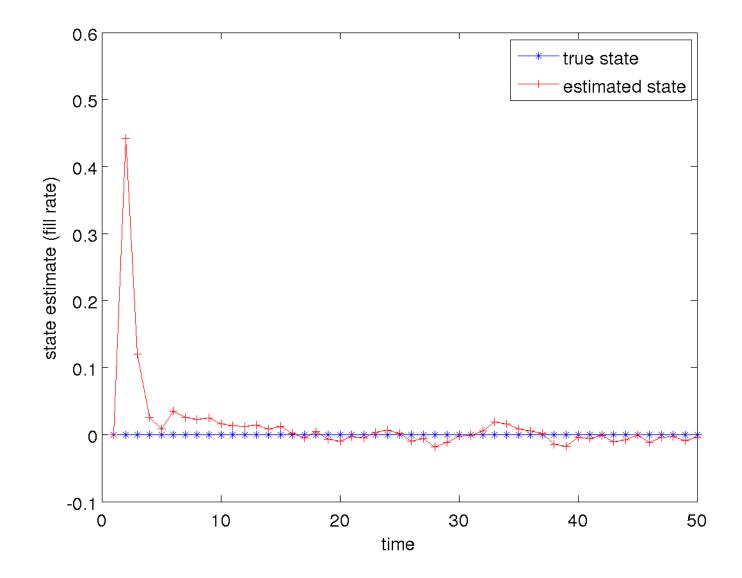
# Tank of Water: Static and not Sloshing

- can we trick the filter by using the filling plant model when the level is static?
  - hopefully not, as the filter should converge to a fill rate of zero!

#### Tank of Water: Static and not Sloshing



### Tank of Water: Static and not Sloshing



# Projectile Motion

 projectile launched from some initial point with some initial velocity under the influence of gravity (no drag)

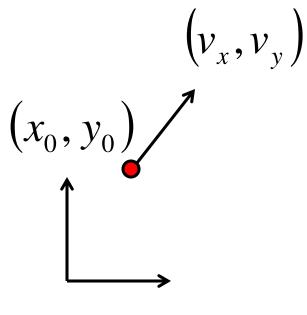
$$x(t) = x_0 + v_x t$$
  

$$y(t) = y_0 + v_y t - \frac{1}{2} gt$$
  

$$v_x(t) = v_x$$
  

$$v_y(t) = v_y - gt$$

2



### Projectile Motion

• convert the continuous time equations to discrete recurrence relations for some time step  $\Delta t$ 

$$x_{t} = x_{t-1} + v_{x,t-1}\Delta t$$

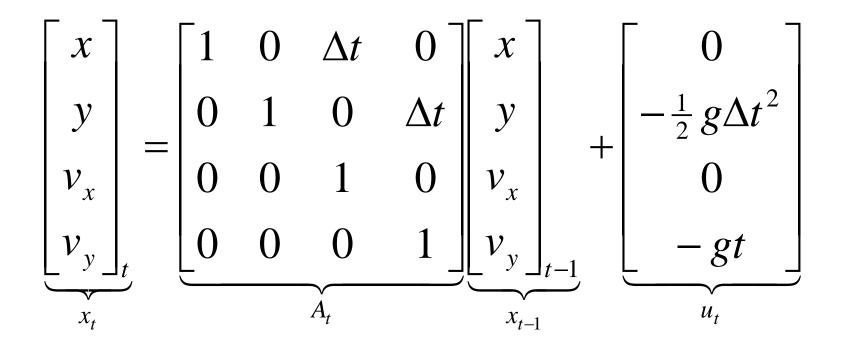
$$y_{t} = y_{t-1} + v_{y,t-1}\Delta t - \frac{1}{2}g\Delta t^{2}$$

$$v_{x,t} = v_{x,t-1}$$

$$v_{y,t} = v_{y,t-1} - g\Delta t$$

### **Projectile Motion**

rewrite in matrix form



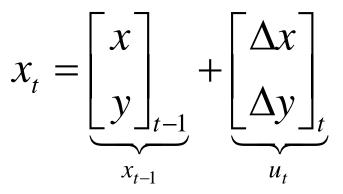
### **Omnidirectional Robot**

- an omnidirectional robot is a robot that can move in any direction (constrained in the ground plane)
  - http://www.youtube.com/watch?v=DPz-ullMOqc
  - http://www.engadget.com/2011/07/09/curtis-boirums-robotic-carmakes-omnidirectional-dreams-come-tr/
- if we are not interested in the orientation of the robot then its state is simply its location \_ \_ \_

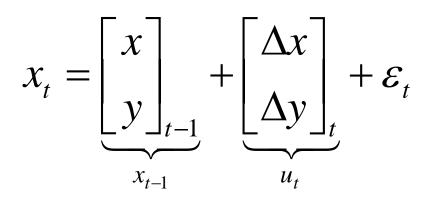
$$x_t = \begin{bmatrix} x \\ y \end{bmatrix}_t$$

### **Omnidirectional Robot**

 a possible choice of motion control is simply a change in the location of the robot



with noisy control inputs



# Differential Drive

- recall that we developed two motion models for a differential drive
  - using the velocity model, the control inputs are

$$u_{t} = \begin{pmatrix} v_{t} \\ \omega_{t} \end{pmatrix} + \begin{pmatrix} \mathcal{E}_{\alpha_{1}v_{t}^{2} + \alpha_{2}\omega_{t}^{2}} \\ \mathcal{E}_{\alpha_{3}v_{t}^{2} + \alpha_{4}\omega_{t}^{2}} \end{pmatrix}$$

### **Differential Drive**

 using the velocity motion model the discrete time forward kinematics are

$$x_{t} = \begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x_{c} + \frac{v}{\omega}\sin(\theta + \omega\Delta t) \\ y_{c} - \frac{v}{\omega}\cos(\theta + \omega\Delta t) \\ \theta + \omega\Delta t \end{pmatrix}$$
$$= \begin{pmatrix} x - \frac{v}{\omega}\sin\theta + \frac{v}{\omega}\sin(\theta + \omega\Delta t) \\ y + \frac{v}{\omega}\cos\theta - \frac{v}{\omega}\cos(\theta + \omega\Delta t) \\ \theta + \omega\Delta t \end{pmatrix}$$
Eqs 5.9

### Differential Drive

- there are two problems when trying to use the velocity motion model in a Kalman filter
  - 1. the plant model is not linear in the state and control

$$x_{t} = \begin{pmatrix} x - \frac{v_{t}}{\omega_{t}} \sin \theta + \frac{v_{t}}{\omega_{t}} \sin(\theta + \omega_{t} \Delta t) \\ y + \frac{v_{t}}{\omega_{t}} \cos \theta - \frac{v_{t}}{\omega_{t}} \cos(\theta + \omega_{t} \Delta t) \\ \theta + \omega_{t} \Delta t \end{pmatrix}$$

2. it is not clear how to describe the control noises as a plant covariance matrix

$$u_{t} = \begin{pmatrix} v_{t} \\ \omega_{t} \end{pmatrix} + \begin{pmatrix} \mathcal{E}_{\alpha_{1}v_{t}^{2} + \alpha_{2}\omega_{t}^{2}} \\ \mathcal{E}_{\alpha_{3}v_{t}^{2} + \alpha_{4}\omega_{t}^{2}} \end{pmatrix}$$

#### Measurement Model

- there are potentially other problems
  - any non-trivial measurement model will be non-linear in terms of the state
- consider using the known locations of landmarks in a measurement model

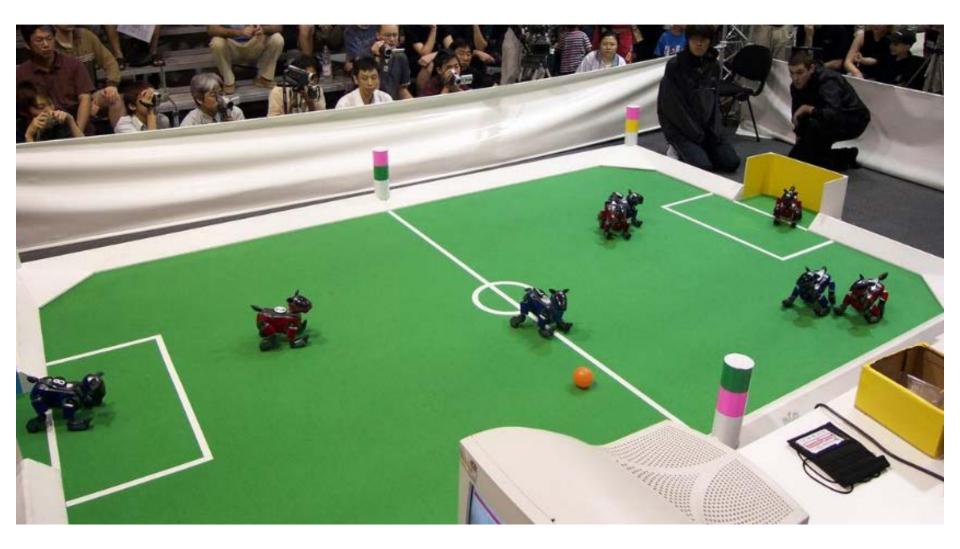
#### Landmarks

- a landmark is literally a prominent geographic feature of the landscape that marks a known location
- in common usage, landmarks now include any fixed easily recognizable objects
  - e.g., buildings, street intersections, monuments
- for mobile robots, a landmark is any fixed object that can be sensed

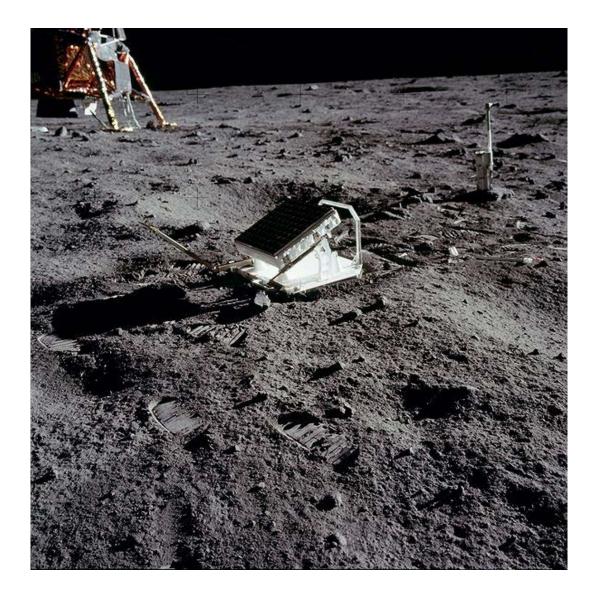
# Landmarks for Mobile Robots

- visual
  - artificial or natural
- retro-reflective
- beacons
  - LORAN (Long Range Navigation): terrestrial radio; now being phased out
  - GPS: satellite radio
- acoustic
- scent?

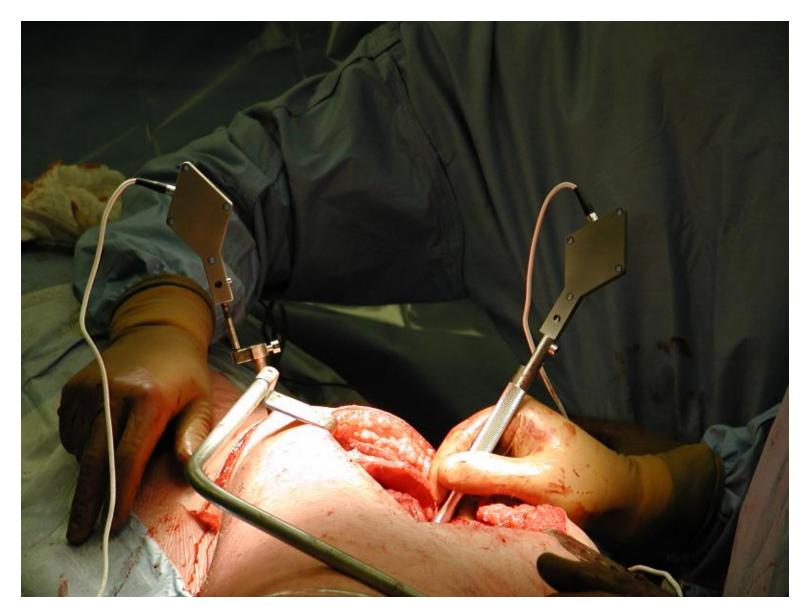
#### Landmarks: RoboSoccer



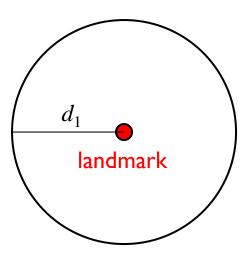
#### Landmarks: Retroreflector



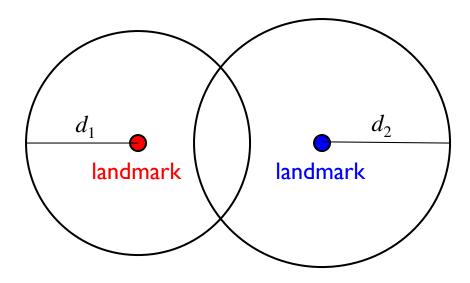
### Landmarks: Active Light



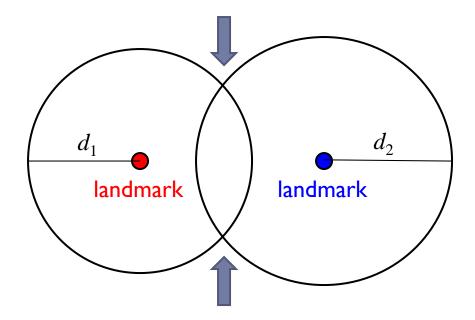
- uses distance measurements to two or more landmarks
- suppose a robot measures the distance  $d_1$  to a landmark
  - the robot can be anywhere on a circle of radius d<sub>1</sub> around the landmark



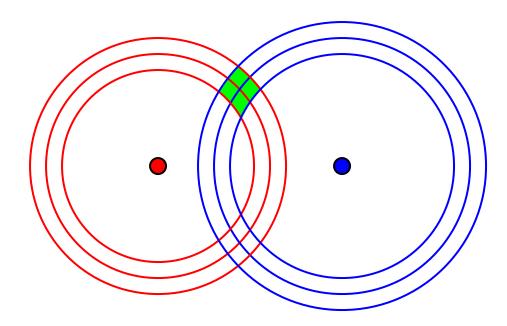
- without moving, suppose the robot measures the distance d<sub>2</sub> to a second landmark
  - the robot can be anywhere on a circle of radius d<sub>2</sub> around the second landmark



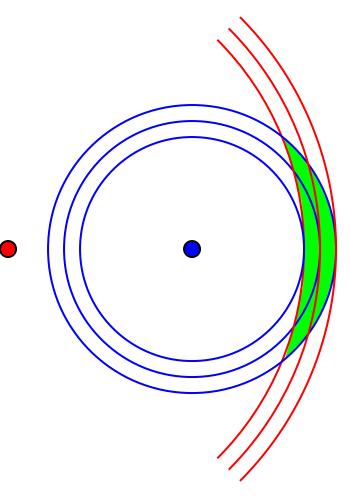
- the robot must be located at one of the two intersection points of the circles
  - tie can be broken if other information is known



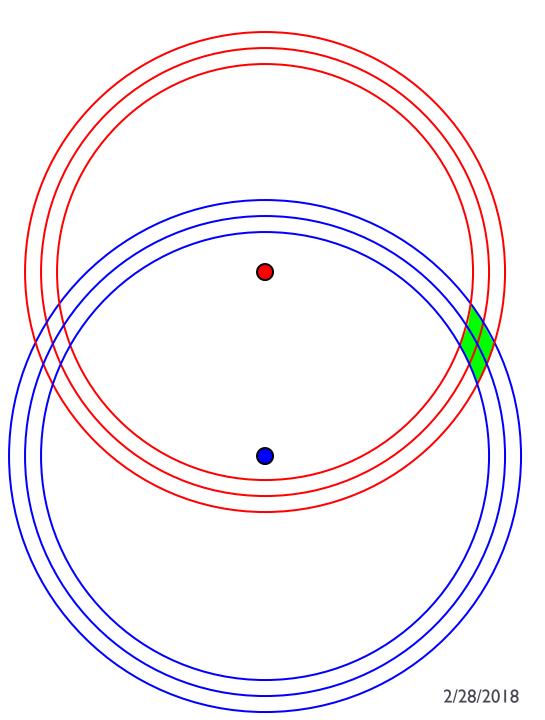
if the distance measurements are noisy then there will be some uncertainty in the location of the robot



- notice that the uncertainty changes depending on where the robot is relative to the landmarks
- uncertainty grows quickly if the robot is in line with the landmarks



- uncertainty grows as the robot moves farther away from the landmarks
  - but not as dramatically as the previously slide



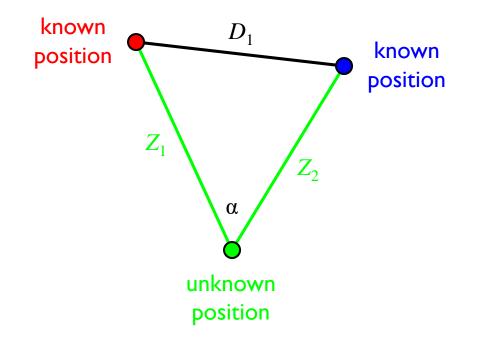
## Triangulation

- triangulation uses angular information to infer position
  - http://longhamscouts.org.uk/content/view/52/38/



# Triangulation

- in robotics the problem often appears as something like:
  - suppose the robot has a (calibrated) camera that detects two landmarks (with known location)
    - > then we can determine the angular separation, or relative bearing,  $\alpha$  between the two landmarks



# Triangulation

- the unknown position must lie somewhere on a circle arc
  - Euclid proved that any point on the shown circular arc forms an inscribed triangle with angle  $\alpha$ 
    - we need at least one more beacon to estimate the robot's location

