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Static State Estimation
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 recall the static state estimation problem we have been 
studying
 the process or plant model

 the observation model
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Static State Estimation
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 how well does the Kalman filter work



Static State Estimation
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 notice that we need to specify the measurement noise 
covariance Qt

 how sensitive is the Kalman filter to Qt ?
 e.g., what if we use a Qt that is much smaller than the actual 

measurement noise?
 e.g., what if we use a Qt that is much larger than the actual 

measurement noise?



Static State Estimation
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 specified Qt = 0.01 * actual Qt



Static State Estimation

2/28/20186

 specified Qt = 100 * actual Qt



Static State Estimation
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 suppose our measurements get progressively noisier over 
time

noise variance increases 10% for each successive measurement



Tank of Water
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 estimate the level of water in the tank; the water could be
 static, filling, or emptying
 not sloshing or sloshing



Tank of Water
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 static level
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Tank of Water: Static and Not Sloshing
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Tank of Water: Static and Not Sloshing
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 notice that in this case the Kalman filter tends towards 
estimating a constant level because the plant noise covariance 
is small compared to the measurement noise covariance
 the estimated state is much smoother than the measurements

 what happens if we increase the plant noise covariance?



Tank of Water: Filling and Not Sloshing
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Tank of Water: Static and Not Sloshing
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 notice that in this case the Kalman filter tends towards 
estimating values that are closer to the measurements

 increasing the plant noise covariance causes the filter to place 
more weight on the measurements 



Tank of Water: Filling and not Sloshing
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 suppose the true situation is that the tank is filling at a 
constant rate but we use the static tank plant model
 i.e., we have a plant model that does not accurately model the state 

transition



Tank of Water: Filling and not Sloshing
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Tank of Water: Filling and not Sloshing
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 notice that in this case the estimated state trails behind the 
true level
 estimated state has a much greater error than the noisy 

measurements

 if the plant model does not accurately model reality than you 
can expect poor results
 however, increasing the plant noise covariance will allow the filter to 

weight the measurements more heavily in the estimation…



Tank of Water: Filling and not Sloshing
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Tank of Water: Filling and not Sloshing
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 it is not clear if we have gained anything in this case
 the estimated state is reasonable but it is not clear if it is more 

accurate than the measurements

 what happens if we change the plant model to more 
accurately reflect the filling?



Tank of Water
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 filling at a (noisy) constant rate and we do not care about the 
rate

 ut is the change in the water level that occurred from time t-1
to t
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Tank of Water: Filling and not Sloshing
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Tank of Water: Filling and not Sloshing
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 notice that the estimated state is more accurate and 
smoother than the measurements

 what about the filling rate? 



Tank of Water
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 filling at a (noisy) constant rate and we want to estimate the 
rate
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Tank of Water: Filling and not Sloshing

2/28/201823



Tank of Water: Filling and not Sloshing
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 notice that the estimated filling rate seems to jump more than 
the estimated level
 this should not be surprising as we never actually measure the filling 

rate directly
 it is being inferred from the measured level (which is quite noisy)



Tank of Water: Static and not Sloshing
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 can we trick the filter by using the filling plant model when the 
level is static?
 hopefully not, as the filter should converge to a fill rate of zero!



Tank of Water: Static and not Sloshing
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Tank of Water: Static and not Sloshing
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Projectile Motion
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 projectile launched from some initial
point with some initial velocity under
the influence of gravity (no drag) ( )00 , yx
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Projectile Motion
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 convert the continuous time equations to discrete recurrence 
relations for some time step 
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Projectile Motion
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 rewrite in matrix form
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Omnidirectional Robot
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 an omnidirectional robot is a robot that can move in any 
direction (constrained in the ground plane)
 http://www.youtube.com/watch?v=DPz-ullMOqc
 http://www.engadget.com/2011/07/09/curtis-boirums-robotic-car-

makes-omnidirectional-dreams-come-tr/

 if we are not interested in the orientation of the robot then 
its state is simply its location
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Omnidirectional Robot
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 a possible choice of motion control is simply a change in the 
location of the robot

 with noisy control inputs
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Differential Drive
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 recall that we developed two motion models for a differential 
drive
 using the velocity model, the control inputs are
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Differential Drive
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 using the velocity motion model the discrete time forward 
kinematics are 
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Differential Drive
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 there are two problems when trying to use the velocity 
motion model in a Kalman filter
1. the plant model is not linear in the state and control

2. it is not clear how to describe the control noises as a plant 
covariance matrix
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Measurement Model
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 there are potentially other problems
 any non-trivial measurement model will be non-linear in terms of 

the state

 consider using the known locations of landmarks in a 
measurement model



Landmarks
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 a landmark is literally a prominent geographic feature of the 
landscape that marks a known location

 in common usage, landmarks now include any fixed easily 
recognizable objects
 e.g., buildings, street intersections, monuments

 for mobile robots, a landmark is any fixed object that can be 
sensed



Landmarks for Mobile Robots
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 visual
 artificial or natural

 retro-reflective
 beacons
 LORAN (Long Range Navigation): terrestrial radio; now being 

phased out
 GPS:  satellite radio

 acoustic
 scent?



Landmarks: RoboSoccer

2/28/201839



Landmarks: Retroreflector
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Landmarks: Active Light
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Trilateration
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 uses distance measurements to two or more landmarks
 suppose a robot measures the distance d1 to a landmark
 the robot can be anywhere on a circle of radius d1 around the 

landmark

landmark

d1



Trilateration
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 without moving, suppose the robot measures the distance d2
to a second landmark
 the robot can be anywhere on a circle of radius d2 around the 

second landmark
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Trilateration
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 the robot must be located at one of the two intersection 
points of the circles
 tie can be broken if other information is known

landmark
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landmark
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Trilateration
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 if the distance measurements are noisy then there will be 
some uncertainty in the location of the robot



Trilateration

2/28/201846

 notice that the uncertainty changes depending on where the 
robot is relative to the landmarks

 uncertainty grows quickly if
the robot is in line with the
landmarks



Trilateration
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 uncertainty grows as the
robot moves farther
away from the landmarks
 but not as dramatically

as the previously slide



Triangulation
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 triangulation uses angular information to infer position
 http://longhamscouts.org.uk/content/view/52/38/

http://longhamscouts.org.uk/content/view/52/38/


Triangulation
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 in robotics the problem often appears as something like:
 suppose the robot has a (calibrated) camera that detects two 

landmarks (with known location)
 then we can determine the angular separation, or relative bearing,  α

between the two landmarks
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Triangulation
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 the unknown position must lie somewhere on a circle arc
 Euclid proved that any point on the shown circular arc forms an 

inscribed triangle with angle α
 we need at least one more beacon to estimate the robot’s location
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